Free and forced vibrations of a segmented bar by a meshless local Petrov–Galerkin (MLPG) formulation
نویسندگان
چکیده
We use the meshless local Bubnov–Galerkin (MLPG6) formulation to analyze free and forced vibrations of a segmented bar. Three different techniques are employed to satisfy the continuity of the axial stress at the interface between two materials: Lagrange multipliers, jump functions, and modified moving least square basis functions with discontinuous derivatives. The essential boundary conditions are satisfied in all cases by the method of Lagrange multipliers. The related mixed semidiscrete formulations are shown to be stable, and optimal in the sense that the ellipticity and the inf-sup (Babuška-Brezzi) conditions are satisfied. Numerical results obtained for a bimaterial bar are compared with those from the analytical, and the finite element methods. The monotonic convergence of first two natural frequencies, first three mode shapes, and a static solution in the L2, and H1 norms is shown. The relative error in the numerical solution for a transient problem is also very small.
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملA Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids
(2001) A Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants and local weak forms. In this paper, a MLPG formulation is proposed for free and forced vibration analyses....
متن کاملAxial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
متن کاملOptimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)
A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007